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OPEN-CHANNEL WAVES GENERATED BY

PROPAGATION OF A DISCONTINUOUS WAVE

OVER A BOTTOM STEP

UDC 626.4:53.072.12A. V. Gusev, V. V. Ostapenko,

A. A. Malysheva, and I. A. Malysheva

This paper presents the results of theoretical and experimental studies of open-channel waves generated
by the propagation of a discontinuous dam-break wave over a bottom step. The cases where the initial
tailwater level is higher than the step height (the step is under water) and where this value is smaller
than the step height (at the initial time, water is absent on the step) are considered. Exact solutions
are constructed using modified first-approximation equations of shallow-water theory, which admit
the propagation of discontinuous waves in a dry channel. On the stationary hydraulic jump formed
above the bottom step, the total free-stream energy is assumed to be conserved. These solutions agree
with experimental data on various parameters (types of waves, wave propagation velocity, asymptotic
depths behind the wave fronts).

Key words: discontinuous wave, bottom step, shallow-water equations, experimental data.

Introduction. The first-approximation equations of shallow-water theory [1–3] are widely used in modeling
the propagation of discontinuous waves [4–7] (hydraulic bores [8, 9]) resulting from complete or partial break of
hydraulic dams or the impact of large sea tsunami-type waves [10] on shallow water. However, the classical system
of the basic conservation laws of shallow-water theory (consisting of the laws of conservation of mass and total
momentum [3]), while correctly describing the parameters of discontinuous waves propagating in a liquid of finite
depth above an even bottom [1], is not suitable for describing wave flows above various bottom-relief features, in
particular, discontinuous-wave propagation over a bottom step or a drop. This is due to the fact that the total-
momentum equation is an exact conservation law only in the case of a horizontal bottom and it cannot be used to
derive Hugoniot conditions for the discontinuities arising from bed level changes.

A method of deriving relations for stationary discontinuities above bed level changes using the shallow-
water equations was proposed in [11] and validated in [12]. This method is based on the assumption that if two
characteristics arrive at such a discontinuity, then, along with the continuity of the discharge, which follows from
the mass conservation law, it is necessary to require the continuity of the Bernoulli function, which follows from the
local-momentum conservation law and the conservation law for the total free-stream energy. If three characteristics
arrive at a discontinuity above a bed level change, the discharge continuity is sufficient to determine all flow
parameters at this discontinuity. The total energy at such a discontinuity is lost, which serves as a criterion for its
stability [3]. These assumptions and a generalized method of adiabats [13] were used to study the unique solvability
of dam-break problems above a bottom step [14] and a drop [15]. The obtained self-similar solutions are in fairly
good agreement with experimental data [16–18] on various parameters (types of waves, wave propagation velocity,
asymptotic depths behind the wave fronts).
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The classical system of the basic conservation laws of shallow-water theory are not suitable for modeling
discontinuous-wave propagation in a dry channel. The exact solutions describing water flow in a dry channel on the
basis of these equations are continuous depression waves [1, 5]. This situation cannot be changed by accounting for
bottom friction, which is a source term that makes no contribution to the Hugoniot conditions at the discontinuous-
wave front [19, 20]. At the same time, numerous laboratory experiments have shown that these continuous solutions
significantly overestimate the propagation velocity of the leading edge of the wave and distort its profile [21–24]. In
experiments, the wave front propagating in a dry channel is much steeper and is subjected to breaking typical of
discontinuous waves.

A method for modeling discontinuous-wave propagation in a dry channel using the shallow-water equations
is proposed in [25]. This method is based on the modified total-momentum conservation law obtained in [26] in
deriving shallow-water equations for the class of generalized solutions with discontinuous waves. This is done using
a double passage to the limit that takes into account the turbulent viscosity effect inside the transition region
corresponding to discontinuous waves. The use of this passage to the limit is an attempt to take into account the
concentrated momentum loss due to the formation of local turbulent vortex structures in the liquid surface layer at
a discontinuous wave front is undertaken. In [20], the modified shallow-water equations were employed to develop
an implicit difference through-computation scheme that allows one- and two-dimensional (planned) calculations of
discontinuous-wave propagation in a dry channel, runup of the waves on a coast, and flow over various coastal
obstacles.

The present paper presents the results of theoretical and an experimental Studies of open-channel waves
generated by the propagation of a discontinuous dam-break wave over a bottom step. In the experiments, the
initial headwater level was constant and the tailwater level decreased gradually. As a result, in the first series
of experiments, the initial tailwater level was higher than the step height (the step was under water), and in the
second series, this value was lower than step height (at the initial time, water was absent on the step). For a uniform
theoretical description of the results of these experiments, we used the modified system of the basic conservation
laws of shallow-water theory proposed in [20, 26], which, on the one hand, admits discontinuous-wave propagation
in a dry channel and, on the other hand, correctly reproduces the parameters of these waves for channels of finite
depth. Exact solutions are constructed using the methods proposed in [14, 15] and the results of a study [27],
in which the unique solvability of the problem for the step under water at the initial time was studied using the
classical system of the basic conservation laws of shallow-water theory. A comparison with results of laboratory
experiments was performed.

1. Experimental Technique. A diagram of the experiment, the main notation, and the coordinate system
used below are presented in Fig. 1. The experiments were performed in a rectangular channel of width b = 20.2 cm
and length l1 + l2 + l3 = 706.5 cm, whose left part was in a tank of width B = 100 cm and length l4 = 330 cm. The
left open end of the channel was at a distance l5 = 130 cm from the left end wall of the tank. The bottom of the
channel consisted of two horizontal segments connected by a vertical step of height δ = 5.5 cm located at a distance
l3 = 238.5 cm from the right end wall. The initial level difference Δz = H − z0 was produced by a flat shield at
a distance l2 = 122 cm upstream of the bottom step. In the experiments, the headwater depth H = 20.5 cm was
constant and the tailwater level changed from z0 = H to z0 = zmin = 1 cm. If z0 > δ, the water layer depth at
the step was H0 = z0 − δ > 0 and, the step was under water at the initial time, because of which the levels initial
tailwater water ahead of and behind the step coincided. If z0 < δ, the step bottom was dry at the initial time.

The initial free-surface levels were determined by measuring needles with an absolute error not greater than
0.05 cm. At the time t0 = 0, the shield was removes from the channel manually. The law of its motion was recorded
by a rheochord transducer. The time taken to remove the shield did not exceed 0.05 sec. The removal of the
shield, which modeled a dam-break event, resulted in the propagation of a discontinuous wave (shown by dots in
Fig. 1) (hydraulic bore) in the positive x direction. After the initial discontinuous waves had passed over the step,
secondary discontinuous waves formed which moved in the opposite direction. The propagation velocities of these
waves and the asymptotic depths behind their fronts were measured in the experiments.

Free-surface level fluctuations were measured as functions of time t at specified points on the x longitudinal
coordinate using wavemeters operating on the principle of difference in electric conductivities between water and
air. The resolution of the wavemeters was 0.2 mm. The fluctuation frequency measured by the wavemeters with
an error not greater than 10% did not exceed 10 Hz. Photo and video recording was also used. Below, the results
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Fig. 1. Diagram of experiment: (a) side view; (b) top view; 1) initial position of the shield; 2) wave
incident on the step after removal of the shield; 3) discontinuous wave modeling (based on the
shallow-water equations) the incident wave.

of the experiments are given for the times at which the waves reflected from the right end wall of the channel and
from the left end wall of the tank have not reached the channel cross section considered.

2. Formulation of the Problem Based on Shallow-Water Theory. In the case of a rectangular
channel of constant width ignoring friction, the modified system of the basic conservation laws of shallow-water
theory are written as [20, 26]

ht + qx = 0; (2.1)

(q + γu)t + (qu + gh2/2 + γ(u2/2 + gh))x = −g(h + γ)bx, (2.2)

where h(x, t) is the flow depth, q(x, t) is the specific discharge (per unit width of the channel), u = q/h is the flow
velocity, z(x, t) = b(x)+h(x, t) is the free-surface level, b(x) is the vertical coordinate of the bottom (bed level), g is
the acceleration due to gravity and γ = γ∗H is a dimensional parameter (H is the characteristic flow depth, which,
for the problem considered, is set equal to the initial headwater depth; γ∗ is a dimensionless parameter chosen so
as to agree with the results of laboratory experiments [23]). Equation (2.1) is the law of conservation of mass, and
equation (2.2) is the modified conservation law for the total momentum, which is derived in [26]. The classical
conservation law for the total momentum

qt + (qu + gh2/2)x = −ghbx (2.3)

follows from Eq. (2.2) for γ = 0. Formally, the modified total-momentum conservation law (2.2) is obtained by a
linear combination of Eq. (2.3) and the equation

ut + (u2/2 + gz)x = 0,

which is the local-momentum conservation law [3].
In contrast to the classical system (2.1), (2.3), the modified system (2.1), (2.2) admits the propagation of

discontinuous waves in a dry channel. Its corresponding Hugoniot conditions above a horizontal bottom b(x) = const
are written as

D[h] = [q]; (2.4)

D([q] + γ[u]) = [qu + gh2/2] + γ[u2/2 + gh], (2.5)
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where D is the propagation velocity of a discontinuous wave and [f ] = f1 − f0 is the jump of the function f at the
wave front. Conditions (2.4) and (2.5) imply that, for a discontinuous wave moving over a stationary background
(u0 = 0), the equation of the modified shock s-adiabat and the propagation velocity of the wave front are given by
the formulas

u = us(h, h0, γ) = (h − h0)
√

g(h̄ + γ)/(hh0 + γh̄) , (2.6)

D = D(h, h0, γ) = h
√

g(h̄ + γ)/(hh0 + γh̄), (2.7)

where h̄ = (h + h0)/2 and h > h0. For h0 = 0, these formulas become the finite relation

u = D =
√

gh(h + 2γ)/γ =
√

θgh, (2.8)

where

θ = u2/(gh) = 2 + h/γ (2.9)

is the Froude number behind the discontinuous-wave front propagating in a dry channel.
By constructing the classical self-similar solution of the dam-break problem above a horizontal bottom for

the modified system (2.1), (2.2), i.e., the Cauchy problem with the initial data

h(x, 0) =
{

H, x < −l2,

h0, x > −l2,
u(x, 0) = 0, (2.10)

where h0 = z0, we obtain a discontinuous wave propagating at a constant velocity D = D(h1, h0, γ) > 0, a centered
depression wave, and a constant-flow region h1 = z1, u1 > 0 between them (curve 3 in Fig. 1). The constant-flow
parameters are found as the coordinates (h1, u1) of the point of intersection of the monotonically increasing shock
s-adiabat (2.6) and the monotonically decreasing wave r-adiabat:

u = vr(h, H) = 2
√

g (
√

H −
√

h ), h < H.

In particular, for h0 = 0, in view of (2.8), the parameters h1 and u1 are related by

u1 =
√

θgh1 = 2
√

g (
√

H −
√

h1 ),

which implies that h1 = 4H/(
√

θ + 2)2. From this, using (2.9), we obtain the formula

γ∗ =
γ

H
=

h1

(θ − 2)H
=

4
(θ − 2)(

√
θ + 2)2

, (2.11)

where the dimensionless parameter γ∗ is expressed in terms of the Froude number θ.
From the results of experimental modeling [23] of the dam-break problem (2.10), it follows that, in the case

of a dry channel in the tailwater region, i.e. at h0 = 0, the characteristic Froude number behind the discontinuous-
wave front is given by the equality θ = θ1 = 6.7, whence, by virtue of (2.11), we obtain γ∗ = γ∗

1 = 0.05 ⇒
γ = γ1 = γ∗

1H = 1.03. This value of γ is used in formulas (2.6) and (2.7) to calculate the flow parameters at the
front of the initial discontinuous wave resulting from a dam break.

Figure 2 shows the dependence h∗
1(h

∗
0) (h∗ = h/H is the dimensionless depth) obtained by solving problem

(2.10) for the classical system (2.1), (2.3) (solid curve) and the modified system (2.1), (2.2) for γ∗ = γ∗
1 = 0.05

(dashed curve). It is evident that significant differences between the classical and modified solutions occur only in
the case h∗

0 < h∗
c ≈ 0.14, where the flow (h1, u1) behind the discontinuous-wave front is supercritical [12]. This

explains why the solutions obtained for the classical system (2.1), (2.3) adequately reproduce the experimental flow
pattern in the case where the initial tailwater and headwater depths satisfy the inequality h0 > h∗

cH ≈ 0.14H ,
because of which the constant flow (h1, u1) formed behind the discontinuous-wave front is subcritical [1, 21, 23].

To construct a solution for t > t0 = l2/D, i.e., after the passage of the initial discontinuous waves over the
step, for system (2.1), (2.2) one needs to solve the problem of discontinuity decay

z(x, t0) =
{

z1, x � 0,

z∗0 , x > 0,
u(x, t0) =

{
u1, x � 0,

0, x > 0
(2.12)
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Fig. 2. Relative depths behind the discontinuous-wave front obtained by solving the dam-break
problem for the classical (solid curve) and modified (dashed curve) basic conservation laws of
shallow-water theory.

above a change in the bed level

b(x) =
{

0, x � 0,

δ, x > 0,
δ > 0, (2.13)

where z∗0 = δ for z0 � δ and z∗0 = z0 for z0 � δ. The points with the coordinates z1 = h1 and u1 [see formula (2.12)]
are on the shock adiabat (2.6), i.e.,

u1 = us(z1, z0, γ1). (2.14)

Following [11, 12], we seek a solution for system (2.1), (2.2) of the generalized discontinuity-decay problem
(2.12)–(2.14) in the form of a combination of simple waves, a stationary jump located at the coordinate origin above
the bottom step, and the constant-flow zones connecting them.

3. Self-Similar Solutions of the Discontinuity-Decay Problem above a Bed Level Change. To
construct self-similar solutions of the generalized discontinuity-decay problem (2.12)–(2.14), it is necessary to specify
constraints on the flow parameters at the discontinuity formed above the bottom step (2.13). Following [14, 15], we
assume that if two characteristics arrive at this discontinuity, then, along with the discharge continuity

[q] = 0 ⇒ q1 = q0, (3.1)

which follows for D = 0 from the Hugoniot condition (2.4) for the mass conservation law (2.1), it is necessary to
require continuity of the Bernoulli function

[u2/2 + gz] = 0 ⇒ (u2
1 − u2

0)/2 + g(z1 − z0) = 0, (3.2)

which follows for D = 0 from the Hugoniot condition for the local-momentum conservation law.
The solution of the generalized discontinuity-decay problem (2.12)–(2.14) based on the modified system of

the basic conservation laws (2.1), (2.2) is constructed by the generalized method of adiabats [13]. This is done using
the results of a study [27], in which a similar problem for the case z0 � δ (the step is under water at the initial
time) is solved using the classical system of the basic conservation laws (2.1), (2.3). In view of these results, it
can be shown that only two flow regimes of type A and B (the solid and dashed curves in Fig. 3) can occur in the
experiments performed. In the description of these flows based on the shallow-water equations, two characteristics
arrive at the discontinuity above the bottom step, because of which relations (3.1) and (3.2) should hold at this
discontinuity.

The self-similar type A solution shown by the solid curve in Fig. 3 consists of a discontinuous wave propa-
gating at a velocity D1 > 0 behind the step, a reflected discontinuous wave propagating at a velocity D2 < 0 ahead
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Fig. 3. Theoretical wave profiles resulting form the propagation of the initial discontinuous wave
over the bottom step.

of the step, a stationary jump above the step, and constant-flow zones between them (h2, u2) and (z3, u3). The
self-similar type B solution shown by the dashed curve in Fig. 3 differs from the type A solution only in that the
constant flow (h2, u2) behind the step is continuously transformed to a centered depression r-wave, on whose left
boundary the critical flow (h4, u4) forms. If z0 � δ, i.e., if the step is above water at the initial time, the type B
solution holds.

It was found in the experiments that, for z0 � δ, the Froude number behind the discontinuous-wave front
propagating behind the step in a dry channel depends weakly on the parameter z0 and that its characteristic value
is defined by the equality θ = θ2 = 15.4. From an analysis of the type B solution, it follows that this Froude number
θ2 is reached for γ = γ2 = 0.135. This value of γ is used in formulas (2.6) and (2.7) to obtain the flow parameters at
the discontinuous-wave front propagating behind the step. Because the discontinuous wave reflected from the step
propagates in a channel of finite depth h1 > 10 cm, it is adequately described by the classical Hugoniot conditions
obtained from formulas (2.4) and (2.5) for γ = 0.

In view of the above assumptions, the constant-flow parameters (h2, u2) and (z3, u3) in the type A solution
are found from the system of equations

u2 = us(h2, H0, γ2), u3 = ur(z3, z1, u1),

J(z3, q) = J(h2, q) + δ, q = h2u2 = z3u3,
(3.3)

where us(h, H0, γ) is the modified shock s-adiabat (2.6) and

u = ur(z, z1, u1) = u1 − (z − z1)
√

g(z + z1)/(2zz1) (z > z1)

is the classical shock r-adiabat [3] issuing from the point (z1, u1); J(h, q) = q2/(2gh2) + h. Having determined the
parameters h2, u2, z3 = h3, and u3 from system (3.3), we calculate the propagation velocities of the discontinuous
waves D1 and D2 by the formulas

D1 = D(h2, H0, γ2) = h2

√
g((1 + 2γ2)h2 + (1 − 2γ2)H0)

2h2H0 + γ2(h2
2 − H2

0 )
,

D2 = D2(h3, h1, u1) = u1 −
√

gh3(h3 + h1)/(2h1) .

(3.4)

In the type B solution, the flow depth and velocity in the centered depression r-wave behind the step (dashed
curve in Fig. 3) are determined from the formulas [3]

h = (ξ − s)2/(9g), u = (2ξ + s)/3, ξ = x/t ∈ [0, u2 − c2], (3.5)

where s = u2+2c2 is the constant value of the s-invariant in the depression r-wave and c2 =
√

gh2 is the propagation
velocity of small perturbations (sound velocity) in the constant-flow zone (h2, u2). On the left boundary of the
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depression wave (3.5) located on the step, because the flow is critical and u4 = c4 =
√

gh4, the flow parameters
(h4, u4) are found from the system

u3 = ur(z3, z1, u1), J(z3, q) = J(h4, q) + δ, q = z3u3 =
√

gh3
4 (3.6)

simultaneously with the constant-flow parameters (z3, u3) behind the reflected discontinuous-wave front.
Once the parameters h4 and u4 are determined, the constant-flow parameters (h2, u2) between the discon-

tinuous wave propagating behind the step and the depression r-wave (3.5) are calculated from the system

u2 = us(h2, H0, γ2) = vr(h2, h4, u4), (3.7)

where us(h, H0, γ) is the modified shock s-adiabat (2.6);

u = vr(h, h4, u4) = u4 + 2
√

g (
√

h4 −
√

h ) (h < h4)

is the wave r-adiabat issuing from the point (h4, u4) located on the critical-flow line u =
√

gh. System (3.7) is
obtained by solving the shallow-water equations of the classical problem of discontinuity decay above a horizontal
bottom [3] with the following initial data:

h(x, t0) =
{

h4, x � 0,

H0, x > 0,
u(x, t0) =

{
u4, x � 0,

0, x > 0.

Once the parameters h2, u2, z3 = h3, u3, h4, and u4 are determined from systems (3.6) and (3.7), the
propagation velocities of the discontinuous waves D1 and D2, as for the type A solution, can be found from
formulas (3.4).

The intermediate solution separating type A and B flows is a type A solution in which the constant flow
(h2, u2) behind the step is critical. The parameters z∗0 = h∗

0 = H∗
0 + δ, z∗1 , u∗

1, h∗
2, u∗

2, z∗3 , and u∗
3 of this intermediate

solution, which are uniquely determined by the initial headwater depth H and the step height δ, are calculated
from the following system of equations:

u∗
1 = us(z∗1 , z∗0 , γ1) = vr(z∗1 , H),

u∗
2 =

√
gh∗

2 = us(h∗
2, z

∗
0 − δ, γ2), u∗

3 = ur(z∗3 , z∗1 , u∗
1), (3.8)

J(z∗3 , q∗) = J(h∗
2, q

∗) + δ, q∗ = h∗
2u

∗
2 = z∗3u∗

3.

In the experiment, the values H = 20.5 cm and δ = 5.5 cm were not changed. Solving system (3.8) for these
values of H and δ, we obtain z∗0 = 7.7 cm, H∗

0 = 2.2 cm, z∗1 = 13.3 cm, u∗
1 = 55.7 cm/sec, h∗

2 = 7.1 cm, u∗
2 =

82.6 cm/sec, z∗3 = 15.3 cm, and u∗
3 = 38.3 cm/sec. Substitution of these values into formulas (2.7) and (3.4) yields

the following values for the velocities of the discontinuous waves in the intermediate solution: D∗ = 133 cm/sec,
D∗

1 = 120 cm/sec, and D∗
2 = 72 cm/sec. If the initial tailwater level z0 ∈ [zmin, z∗0 ], then, after the passage of the

initial discontinuous wave over the bottom step, a type B solution takes place; if z0 ∈ (z∗0 , H), a type A solution
holds. Because H∗

0 > 0, flows in which a discontinuous wave behind a step propagates in a dry channel (H0 = 0)
are described by type B solutions.

The self-similar type A and B solutions were found by numerically solving the corresponding systems of
nonlinear algebraic equations using an iterative method. The accuracy of these numerical solutions is several orders
of magnitude higher than the accuracy of the experimental data.

4. Comparison of Theory and Experiment. Figures 4–9 gives results of a comparison of the theoretical
and experimental parameters of the flows resulting from the propagation of the initial discontinuous wave over the
bottom step.

Time variation of the water free-surface level at a fixed cross section of the channel is shown in Figs. 4
and 5. In the theoretical solution, the main difference between the type A and B waves behind the step is that the
free-surface level behind the wave front of type B first reaches a constant value and then increases monotonically,
whereas the level behind the type A wave front does not change (see Fig. 3). The experimental data in Fig. 4 are
in qualitative agreement with the theoretical result. At the same time, the undulations formed behind the type A
wave front are not described by the first approximation of shallow-water theory. The occurrence of the undulations
is due to the fact that, on a certain interval behind the type A wave front, the vertical velocities on the liquid
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Fig. 4. Time evolution of the free-surface level behind the step at x = 80 cm for type A wave at z0 =
12.5 cm (1) and type B wave at z0 = δ = 5.5 cm (2): the solid curves refer to the theoretical solution and
the points refer to the experimental data.

Fig. 5. Time evolution of the free-surface level ahead of the step at x = −82 cm: the solid curve refer to
the theoretical solution and the points refer to the experimental data; type A wave incident on the step
(1) and reflected from it (2) for z0 = 12.5 cm; type B wave incident on the step (3) and reflected from it
(4) for z0 = δ = 5.5 cm.

surface are comparable to the horizontal velocities. To model these undulations theoretically, it is necessary to use
more exact approximations of shallow-water theory or the complete equations of hydrodynamics.

In the theoretical solution, the free-surface level past the discontinuous-wave front behind the step changes
suddenly, in particular, in the case of wave propagation in a dry channel (see Figs. 3–5). In experiments, the waves
have the form of a moving hydraulic jump. As is known, for stationary flows, five types of hydraulic jump exist,
depending on the Froude number [28]. All of them are observed in the nonstationary problem considered. A bore
with a roller in the head part and a smooth undular bore are the main types of hydraulic jump. The other types
are intermediate.

In Fig. 4, the experimental type A wave is a smooth undular wave, whose first crest broke at a distance
x = 200 cm from the step. The head of the experimental type B wave propagating in a dry channel is characterized
by the presence of a distinct roller. As the initial depth H0 increases, undulations arise behind the roller, which
decrease upstream. From the results of the experiments, it follows that there is a range of x, t, and H0 in which
the waves behind the step have the form of a smooth undular bore. As the initial depth H0 increases further and
the level difference Δz = z1 − z0 becomes sufficiently small, the experimental type A waves behind the step become
linear and can be modeled with high accuracy using the linear approximation of shallow-water theory.

The curves shown in Fig. 5 are the profiles of the initial discontinuous wave incident on the step and the
discontinuous wave reflected from it. The first sharp increase in the free-surface level occurs when the initial
discontinuous wave formed after the removal of the shield above an even bottom reaches the wavemeter and the
second occurs when the wave reflected from the step reaches the wavemeter. The experimental type A waves, both
the initial wave and the wave reflected from the step, are smooth, and the type B waves are moving hydraulic jumps
with the first crest breaking continuously (a bore with a roller [28]).

Figures 6 and 7 show the relative water levels behind the discontinuous-wave fronts propagating behind the
step and ahead of it, respectively. The random error in measuring these levels does not exceed the size of the points
presented in Figs. 6 and 7. In the case of a smooth undular bore and intermediate types of bore with undulations,
the experimental value of the level was taken to be its asymptotic value, i.e., the level value at a large distance
from the wave front, where the undulations degenerate. From Figs. 6 and 7, it follows that the theoretical results
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Fig. 6. Water level behind the wave front propagating behind the step: curve 1 refer to the theoretical
solution and points refer to the experimental data at x = 40 (2), 80 (3), 120 (4), and 150 cm (5); the
dot-and-dashed curve shows the boundary between the regions of existence of type A and B waves.

Fig. 7. Water level behind the wave front reflected from the step: the curve refers to the theoretical solution
and the points refer to the experimental data; the dot-and-dashed curve shows the boundary between the
regions of existence of type A and B waves.
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Fig. 8. Velocity of the discontinuous-wave front behind the step: curve 1 refers to the theoretical solution
and points refer to the experimental data (points 2 refer to x1 = 45 cm x2 = 75 cm, and x = 60 cm;
points 3 refer to x1 = 115 cm, x2 = 155 cm, and x = 135 cm); the dot-and-dashed curve shows the
boundary between the regions of existence of type A and B waves.

Fig. 9. Velocity of the wave front reflected from the step: the curve refers to the theoretical solution and the
points refer to the experimental data (x1 = −85 cm, x2 = −55 cm, and x = −70 cm); the dot-and-dashed
curve shows the boundary between the regions of existence of type A and B waves.
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are in fairly good agreement with the experimental data on the asymptotic depth behind the wave front. The first
approximation of shallow-water theory does not describe undulations.

Figures 8 and 9 gives the relative velocities of discontinuous waves behind the step and ahead of it, respec-
tively. In the experiment, this velocity was taken to be the velocity of longitudinal motion of a certain point chosen
on the wave profile. Because of breakings at the wave front, the velocity determined in this manner can depend on
the choice of the point of the profile. The experimental data in Figs. 8 and 9 correspond to the velocity of motion
of the height-averaged point at the wave front. This velocity was determined from the signals of two stationary
wavemeters located at the points with the coordinates x1 and x2. The indicated velocity was normalized to the
value x = (x2 − x1)/2 corresponding to the middle of the interval [x1, x2]. For a bore with a roller, its propagation
velocity is inevitably measured with a random error due to random changes in the roller shape. Therefore, for some
parameter values of the problem, up to five measurement were performed under the same conditions. The standard
error obtained in the repeated measurements is shown by vertical segments in Fig. 8. From Figs. 8 and 9, it follows
that the theoretical and experimental values of the velocities D1 and D2 are in good agreement, in particular, in
the case of discontinuous-wave propagation behind the step in a dry channel.

Conclusions. The self-similar solutions constructed in the present work are in fairly good agreement with
experimental data on various parameters (types of waves, their propagation velocity, asymptotic depths behind the
wave fronts). These solutions were constructed on the bases of shallow-water theory using the modified system
of the basic conservation laws describing discontinuous-wave propagation in a dry channel and the assumption
of conservation of the total free-stream energy at the stationary hydraulic jump above a bottom step. It should
be noted that the mathematical modeling of wave propagation in a dry channel using the complete equations of
hydrodynamics is a difficult problem (see [29]). In the solutions of this problem obtained by numerical methods based
on the two-dimensional Euler and Navier–Stokes equations (ignoring the entrainment of air bubbles in the wave
head), the propagation velocity of the leading edge of the wave is significantly overestimated. In the calculations of
the problem of dam break above a horizontal bottom with a dry channel in the tailwater region [29], this velocity
asymptotically reaches the propagation velocity of the corresponding depression wave obtained from the classical
system of the basic conservation laws of shallow-water theory (2.1) and (2.3). In addition, the indicated numerical
solutions can significantly distort the head profile of the wave propagating in a dry channel. At the same time, the
results of the present work show that the method proposed here allows the propagation of such waves to be modeled
adequately in terms of shallow-water theory by constructing corresponding self-similar solutions (see Figs. 4, 6,
and 8).

Thus, the proposed modification of shallow-water theory provides generally adequate descriptions of the wave
flows resulting from discontinuous-wave propagation over a bottom step. At the same time, this theory does not
describe undulations since it uses a hydrostatic pressure distribution. To describe the undulations, it is necessary
to employ models that take into account the deviation from this law, for example, the classical Boussinesq equation
or other equations derived from higher-order approximations of shallow-water theory.
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